

PROCEDURAL PLANETS INTO DETAIL

TWAN DE GRAAF

092002

VISUAL ARTIST

A dissertation submitted in partial fulfillment of the requirements for the Bachelor Degree

in óEngineering in Game Architecture and Designô.

The Academy of Digital Entertainment.

Breda University of Applied Sciences

Supervisorôs name:

Kim Goossens

Block A - B / 2012-2013

&

Block C - D / 2012-2013

Submitted on:

 31-05-2013

2

ABSTRACT

Figure 1: Resulting planet from afar and up close.

In this paper steps are laid out to create detailed procedurally generated worlds, intended to be used

in videogames. The generator combines methods used in the past with pioneering methods. The

product of this research project is a tool to generate data for the visualization of three-dimensional

planets, from low to very high detail.

Contrary to most applications that are used to visualize planets, this generator separates the

generation and visualization. This way the visualization system could be practically implemented into

any game engine, but does not require the generation algorithm to be written for each separate

engine, saving development time in the long run.

One of the aims is to give artistic control over the outcome. Procedural generation is often mistaken

for random generation. While it uses a lot of randomly generated elements, the procedure makes

sure the different elements work well together and form a governed, coherent structure. The power

of procedural generation lies at and beyond the point where the need for ease outweighs the need

for control. It creates the rest of the world after the artist has set his or her guidelines. This way the

procedure could theoretically use these guidelines to create more and more detailed versions of the

planet, without the need of intervention of the artist after the initial look is decided upon.

The procedure is controlled using a combination of vertex paint, bitmaps, sliders and gradients. This

way it is easy to learn using the tool, even without prior knowledge of Houdini, the software that is

used to create and run the generator. Houdini is being developed by Side-Effects since 1987.

The sliders can be used to create different kinds of generic planets. Vertex paint gives the artist more

control over the different terrain types across the planet. Bitmaps give high control over small areas,

enabling very specific terrain features to be projected onto the planet's surface. This helps to on one

hand create realistic planets when using real elevation data. On the other hand bitmaps created by

artists can make for interesting fantasy planets.

3

TABLE OF CONTENTS

Introduction ... 4

Previous work .. 5

Research Goal .. 5

Planet creation .. 6

Spheroids ... 6

Height map projections ... 7

Climate Generation ... 8

Brush Placement System ... 11

Chunking, Radial/Polar .. 13

Chunking, Cartesian ... 14

Voxels .. 16

Noise .. 18

Terrain Detailing, Pure Noise .. 19

Terrain Detailing, Texture Based ... 22

Caves ... 25

Object placement .. 27

Water ... 29

Texture Coordinates .. 31

Texture Maps ... 33

Normal maps ... 34

Vertex blend data generation ... 38

Optimization .. 39

Export Pipeline .. 41

Shader Creation ... 43

Terrain Shader ... 43

Vertex blending ... 45

Water shaders ... 46

Atmospheric Scattering ... 47

Cloud shaders .. 48

Terrain Prop shaders ... 50

Implementation ... 51

Chunk Loading system ... 52

Object placement .. 53

Underwater ... 54

Additional effects .. 55

Result ... 56

Summary ... 62

References ... 63

Tutorials and Articles ... 63

Videogames ... 65

Images ... 66

Special thanks to ... 67

System information ... 68

4

INTRODUCTION

Each year people expect more from video game visuals. The industry tries to keep up with larger

budgets and employing more people. Somewhere however is going to be a cap, where employing a

larger budget is no longer going to be profitable. This is already starting to happen, even large

returns do not always make up for the bloated budgets anymore. The industry is trying to come up

with solutions for this such as using third party engines and outsourcing. Another solution is

procedural generation. Procedural generation is a completely different approach to creating content.

Instead of creating object after object manually, procedural content is content generated

automatically by using rules and guidelines. Usually this approach takes more time up front, but

saves a lot of time in the long run. This however does not exclude small projects at all.

Figure 2: SIP, a game I created with 5 other developers in roughly 48 hours,

using a procedural level generator. (SIP team, 2012)

The strength of procedural generation lies in taking over tedious, repetitive tasks. An artist can make

the important decisions and the procedure can fill in the details. While procedural generation is

already widely used in film productions, the video game industry is still adapting to this mentality.

Even though the concept itself not new for video games, Elite was created in 1984 by David Braben

and Ian Bell. This game relied heavily on procedural generation to create a vast universe for the time.

With procedural generation a game can feature significantly more content, more cheaply. This is one

of the main reasons for developers to consider using procedural generation alongside manual

generation. Besides being personally interested in the topic, the way procedural generation may

change the game industry is one of the main reasons for writing this paper.

5

PREVIOUS WORK

A game that heavily influenced this research is Spore, released by Maxis, Electronic Arts in 2008. It

generates a practically infinite amount of planets to visit and edit. The planet generator is built into

their game engine, which has benefits, such as giving real time control and being a lot faster, and

taking less disk space. On the other hand it makes reusing the work on a different engine difficult and

artists do not have direct control over the look. Instead they authored all the possible looks and let

generator do the rest, which was of course fine for what was needed in Spore's case.

 Figure 3: Spore, planet from space Figure 4: Spore, planet close up (EA, 2008)

With my procedure I employed useful tricks I took from Spore, but in a way that is more suited for a

more limited amount of planets, that require more control. Additionally my procedure is capable of

creating more detailed terrain and artists can use 3-dimensional deformation, in comparison to the

height-map-like deformation used in Spore.

Other games I took inspiration from on a more aesthetic level are:

Figure 5: Planetside 2 (Sony Online Entertainment, 2012) Figure 6: Kerbal Space Program (Squad, 2012)

RESEARCH GOAL

The goal of this research is to find a way to create an industry-standard planet generator. It should be

able to create a world suitable for a wide range of videogame genres or simulations. Focus points

are: Control, Visual quality and Ease of use. The generator should be capable of more than just a

height-map-terrain.

6

PLANET CREATION

This chapter will show the decisions that were made, why they were made and how they were

executed.

SPHEROIDS

The starting point for creating the procedure was deciding what structure or more specifically, edge

layout would serve best for this procedure. The two most apparent methods were tested:

Icosahedron- spheres and spherified-cubes. Longitude-latitude-spheres proved to be unusable at the

very start, due to the way polygons of those spheres are stretched too much at the poles in

comparison to those at "the equator".

The icosahedron-sphere has the least

distortion of the three types of spheres. This

comes at a cost: It exists of triangles instead of

quads and it has 30 possible UV-seams. (See

subchapter: Texture coordinates)

 Figure 7: Icosahedron- sphere

The spherified cube has some minor distortion

where the corners of the cube existed

originally. The upside is that it can be entirely

built up with quads. It also has only 12

possible UV-seams, compared to the

Icosahedron, making it much easier to unfold

it in a way that is easy to understand and

without much additional UV-stretching.

 Figure 8: Spherified cube

Longitude-latitude-spheres are built up out of

both triangles and quads, this results in

varying polygon sizes across the latitude. It

also creates a lot of UV-stretching, or illogical

UV-layouts, whatever unwrap method is used.

In the image, the sphere is unwrapped

cylindrically.

 Figure 9: Longitude-latitude-spheres

From this quick analysis, the spherified-cube was of the most use and was used as a starting point for

the rest of the project.

7

HEIGHT MAP PROJECTIONS

The procedure is not based on simple height map terrain. However height maps are utilized. Rather

than loading in a single height map, multiple height maps can be used as brushes, projected onto the

sphere. This method has a lot of benefits: it is more flexible, faster and combinations can be made.

Using this method eliminates the need of creating or compositing height maps by hand, but still gives

a lot more control compared to generators that exclusively use Perlin-like noise. (See subchapter:

Terrain detailing, pure noise)

This is also one of the main features of Spore's (EA, 2008) planet generator. The generator that is

built into that engine is able to quickly generate simple but good looking planets. Because Spore does

this operation in the terrain shader, it is capable to edit and update this "height map" in real time,

allowing for player interaction. Because of the calculation times, the rest of the terrain is relatively

simple to keep the game running fluently.

Figure 10: Three of the brushes used by Spore's System. (EA, 2008)

The generator described in this paper does not generate the terrain on the fly. This prevents adding

direct player interaction on the scale of Spore. However, this approach does allow for more visual

fidelity and more complex operations on the surface and sub surface, the latter being entirely

impossible using the simplified system used in Spore.

Spore uses something similar to a particle system to place these brushes. It uses different versions of

these systems to create single brushes, groups or streaks of brushes. This works fast and efficient for

creating a lot of random planets. After that either the developers or players could paint over this

with other brushes. This system also gives most of the control that is needed for this document's

generator. Though more ways to control and edit the output of this system made it more versatile.

Figure 11: The first result after implementing the height-map-brush system and creating a simple terrain

shader.

8

The brush placement system started with single brushes placed randomly on the surface. By using 2

different brushes, this gave the result on the last page. The brushes could be set to either lower the

terrain or push it upwards. By simply choosing the right kind of brushes, an artist can influence the

style of the planet.

Figure 12: A fantasy and a realistic height-map-brush were used to get the initial result. (Flower, 2011)

To improve on this, the placement of the brushes needed to be more coherent and structured,

instead of placing each individual brush randomly or manually. To do this a climate simulation has

been created.

CLIMATE GENERATION

The continents are random, yet easily adjustable. They are created by scattering points on the sphere

and convert this to a polygonal solid using the "tetrahedralize" node in Houdini. It connects the

points to form triangles. After that all the points are beveled and spherified to create polygons with 4

or more sides, which makes the connections between continents look better. After this, land is

distinguished from sea randomly according to a ratio set by the user. The borders of each polygon or

quasi continental plate are subdivided and noise is applied. Finally the entire surface is subdivided

and spherified.

 Figure 13: Polygonal solid, Beveled spherified solid & Solid with noisy border.

Using continental plates creates a realistic looking and

visually appealing division between water and land. It

can also be used to determine where mountain

ranges and oceanic trenches could occur naturally.

From this actual climates can be calculated using the

latitude, distance to water and mountains. This gives

artists a preset to work from.

Figure 14: Final Continental Base.

9

Most features can be controlled without having to manually edit them:

¶ The amount of continental plates.

¶ A seed for the overall topology of the plates,

¶ A ratio for land versus water,

¶ A seed for selecting the land and water plates

Besides these main settings, there are various settings to tweak the terrain, like the noise around the

plate's borders.

From these continental base plates extra features can be

calculated. The user can determine the likelihood that the

continental plates create mountain ranges, oceanic

trenches and oceanic ridges by "colliding", emulating the

workings of Earth's tectonic plates according to the leading

theories on this topic. (Wikipedia, 2013a)

Figure 15: Mountains, trenches and ridges and.

With the land and water masses present as well as

mountains, the rest of the climate can be generated. First a

simple gradient is used to determine the base temperature

across the latitude. After that a wind direction model is set,

customizable over the latitude. (Wikipedia, 2013b)

Figure 16: Base temperature and wind directions

For a more organic and correct climate a thermohaline circulation (Wikipedia, 2013c), or in other

words, oceanic conveyor belt, is simulated. The upper currents of the conveyor belt are affected by

the wind, the lower currents are disregarded as they do not affect the climate as much. The

thermohaline circulation can make coastal regions at higher latitude relatively warm. For example

Amsterdam has warmer winters on average than New York, which is at a lower latitude. The

simulation is done by creating a path in the ocean following the wind direction. After that the

temperature values are reversed and added to the result. The old values are subtracted to conform

to the first rule of thermodynamics.

Figure 17: Thermohaline circulation

10

With the final temperature data and wind directions

rainfall can be simulated. First the user has to set the

maximum air moisture over the temperatures as air can

hold a varying amount of water depending on the

temperature. (Wikipedia, 2013d) After that, the ocean

water is moved along the wind direction until the "clouds"

reach a mountain or have traveled their maximum

distance. This creates a rainfall map.

Figure 18: Rainfall map

From this rainfall map rivers can be generated.

everywhere where rain falls "rain nodes" are created.

Rivers start in areas with low rainfall. After that they

travel from rain node to rain node in the general

direction of the ocean. A river stops when it reaches

either the ocean or another river. If a river cannot

reach either, the river is discarded. The rivers get their

width by adding up the rainfall of all rain nodes

upstream. The rainfall and the rivers together

determine the moisture levels of the climates on land.

Figure 19: Generated Rivers

When adding the placement of mountains, land,

coast, oceanic ridges, the ocean floor and ocean

trenches to the climate map, the final climate can be

calculated. Instead of gradients the final climate is

divided in steps. This makes the amount of climate

types manageable. The user can define how many

steps of temperature and moisture are needed. The

height is always divided into 6 levels: oceanic

trenches, ocean floor, oceanic ridges, coastal regions,

main land and mountains.

Figure 20: Final, stepped climate with displaced geometry

This Climate map can be used to generate certain terrain features that can be intended for specific

climate types. This includes height-map-brushes (See subchapter: Brush Placement System), terrain

detailing (See subchapter: Terrain detailing, Texture based) and the placement of objects (See

subchapter : Object placement)

11

BRUSH PLACEMENT SYSTEM

In the stepped version of the climate on the last page there are 6 height levels, 7 temperature levels

and 4 moisture levels. This equals 6*7*4 = 168 climate types. Dividing the climate like this makes it

possible to give specific characteristics to each climate type. One of these possible settings is that

certain height maps can be linked to each climate type. Each climate type can have one or more

height maps, which can be used exclusively for that climate or a range of climate types. Adding no

height map to a climate type simply means there are not going to be any height-map-deformations

for that climate type.

A system, as shown in the image, has been

added to have an easy overview of what

height-maps have been added to each

climate type. The system uses a three-

dimensional grid that conforms to the

color values of the stepped climate. This

means on the X-axis the different

temperature levels are represented, the

height levels are on the Y-axis, and the

water levels are on the Z-axis.

 Figure 21: Brushes selected for terrain deformation

These height maps or terrain brushes can be added to this grid in three ways: A brush can be added

to a single climate type, to a boxed range climates or a spherical range of climates.

These ranges adhere to the grid as well. First the

middle point of a climate is defined, say 3,4,2 ,

from this middle point a range can be set to

include other climate neighboring climate types as

well. A range could be 1,1,0 as these ranges are

three-dimensional as well. When set to a boxed

range the climate types would go from 2,3,2 till

4,5,2; when set to a spherical range, the corners

are simply left out. The system allows for five

climate ranges to be set per brush, if that is

insufficient, a brush can be simply added multiple

times with an additional five ranges each time.

Figure 22: Boxed (gray) versus Spherical (blue) ranges, ranges here are 1 in each direction.

12

The height maps are scattered randomly on the planet's surface, on the appropriate climate type

areas. The density of height maps can be determined by the user, as well as the seed. In addition to

the total amount, the user is also able to determine the distribution of the amount of brushes among

the climate types. This is done using three curves, one for each climate axis.

These three curves determine the

density along the three climate axes.

The height brush density curve has a dip

near the end. This means there will be

about half the amount of brushes with

the height climate of 5 (out of 6),

compared to the other height climates.

Along the other axes the distribution is

even.

Figure 23: Height map brush distribution along the three climate axis

To have a fast update each time the

above curves are changed, the total

density of the brushes or the seed is

changed, a preview is added to get an

idea where the brushes go. The

numbers have been colored in the

corresponding climate color.

 Figure 24: Height Map Placement Preview

When the user is content with the settings, The height maps can be applied to the planet. This is

done by placing the appropriate brushes on top of each intended brush spot. The height values are

then transferred to the planet's mesh. The mesh can then be pushed up and down according to these

values.

Figure 25: Before and after height map projection.

